6 Steps for Healing Broken Bone (Fractures) Faster
Those of us who have experienced a significant fracture likely recall first the pain of the injury, then we often focus our attention on the prospect of time in a cast or other form of extended immobilization during the fracture healing process. We imagine the discomfort and limitations that will ensue, and after all else settles down, we often wonder, “How strong are my bones anyway, and will I fracture again?”
Nature, on the other hand, has no such questions, but moves swiftly to initiate healing. Guided by a complex intelligence that we do not yet fully understand, bone repairs itself — and over a few months is made whole again. The fracture self-repair process is spontaneous, natural, and seeks no direction from us, but what we do during this time is of unrecognized importance. The stage we set for healing greatly influences the speed, comfort, and completeness of the bone renewal process. Further, life-supporting changes made in response to a fracture can strengthen our entire skeleton and reduce the likelihood of future fractures.
phases. The inflammation phase is the first stage of healing. Immediately upon fracture, a blood clot forms, allowing the influx of inflammatory,
clean-up cells to the wound area. This is followed by a cytokine cascade that brings the repair cells into the fracture gap. These cells immediately begin to differentiate into specialized cells that build new bone tissue (osteoblasts) and new cartilage (chondroblasts). Over the next few months, these cells begin the repair process, laying down new bone matrix and cartilage. At this initial stage, osteoclast cells dissolve and recycle bone debris.
The second, reparative stage begins about two weeks after the fracture occurs. In this stage, proteins produced by the osteoblasts and chondroblasts begin to consolidate into what is known as a soft callus. This soft, new bone substance eventually hardens into a hard callus as the bone weaves together over a 6- to 12-week time period.
5 nutritional steps to accelerate fracture healing
People who have had a fracture aren’t often told that they can do anything to make their bones heal faster — at most, they’re told to limit the use of the injured bone or limb (not easy to do if the fracture is in your spine!). But there are a number of methods you can employ to reduce your healing time:
1. Provide the body with adequate energy
Fracture healing requires more energy than you might expect. Thus, it’s appropriate to increase your caloric intake to promote healing. In traumatic fractures of the long bones, for example, there is an immediate increase in metabolic demands that can translate into a caloric demand three times that of normal. While a normally active adult may require 2,500 calories a day, a bedridden, injured patient with multiple fractures may need 6,000 calories per day! If this demand is not met, the healing process is compromised.
2. Increase your protein intake
Bone can be imagined as being somewhat like a sponge made of living protein upon which mineral crystals are embedded. By volume, roughly half of bone is comprised of protein. When a fracture occurs, the body is called upon to gather protein building blocks together to synthesize a new structural bone protein matrix. In addition, protein supplementation increases growth factors like insulin-like growth factor-1 (IGF-1), a polypeptide that exerts a positive effect on skeletal integrity, muscle strength, immune response, and bone renewal. Protein malnutrition or under-nutrition leads to a “rubbery” callus, compared to the rigid calluses of those with adequate or high protein intake. Numerous studies document the acceleration of fracture healing with even a modest 10- to 20-gram increase in protein intake. The benefits of supplemental protein are important to everyone and especially important to those with malnutrition or low baseline protein intake. In fact, among elderly hip fracture patients, poor protein status at the time of fracture predicts fracture outcome. Those with low protein status take longer to heal, and have more complications, including death.
Specific amino acids of special importance include lysine, arginine, praline, glycerine, cystine, and glut amine. Ly sine, for example, is known to enhance calcium absorption, increase the amount of calcium absorbed into the bone matrix, and aid in the regeneration of tissue.
3. Increase anti-inflammatory nutrients
Antioxidants repair oxidative damage. When a bone fracture occurs, a remarkable yield of free radicals is generated by the damaged tissues. In particular, this damage occurs as the tightly bound collagen strands running through the mineral phase of bone are forcefully broken. These ruptured collagen strands interact with oxygen-yielding oxygen radical metabolites. These free radicals are associated with inflammation, further breakdown of bone collagen, and excessive bone turnover. In fracture healing, increased free-radical production can overwhelm the natural anti-oxidant defense mechanisms. In such cases, antioxidants — including vitamins E and C, lycopene, and alpha-politic acid — have been suggested to be beneficial in suppressing the destructive effect of oxidant free radicals on whole body systems and improving fracture healing in animal models and cultured human cell lines.
Inflammation is an essential component of the healing process in bone. Although painful, it is an important part of the cleaning-up and rebuilding process. This inflammatory process involves the cyclooxygenase (COX) enzymes COX-1 and COX-2. Many of our standard non-steroidal anti-inflammatory drugs act by inhibiting the COX-1 and COX-2 enzymes—which relieves the pain, but also delays healing. On the other hand, nourishing the body to reduce inflammation naturally speeds healing. Vitamin C, bioflavonoids and flavonols such as quercitin and proanthrocydins, and omega-3 fatty acids naturally soothe the inflammatory process and speed healing.
4. Boost your mineral intake
By weight, bone is roughly 70% minerals (calcium, phosphorus, magnesium, silicon, zinc, etc.) and fracture healing requires available minerals. Most of us under-consume minerals on an everyday basis, so drawing minerals to the healing site can often involve a process of “stealing from Peter to pay Paul.” (See our 20 key bone nutrients for details on average mineral intake.)
Specific key minerals for fracture healing include the following:
- ZINC. Some 200 enzymes require zinc for their functioning. Many of these functions involve cell proliferation. Zinc supplementation aids in callus formation, enhances bone protein production, and thus stimulates fracture healing.
- COPPER. Copper aids in the formation of bone collagen and is important to the healing process. The body’s demand for both copper and zinc rises according to the severity of the trauma.
- CALCIUM and PHOSPHORUS. The main minerals in bone are calcium and phosphorus, in the form of calcium hydrogenation crystals. This hydrogenation compound plays an important role in regulating the elastic stiffness and tensile strength of bone. The building and rebuilding of bone tissue requires adequate supplies of both calcium and phosphorus, which can be supplied from diet and bone reserves. Early research suggested that fractures can heal normally independent of dietary calcium and indeed it has been found that during the first few weeks of healing, calcium is drawn from the skeleton for fracture healing. After that, the diet provides the calcium necessary for fracture repair. Calcium adequacy at the RDA level is important, but unusually high intakes do not appear to speed fracture healing. As calcium absorption is dependent on vitamin D, these nutrients work synergistic ally. Human studies, in fact, suggest that for best fracture healing both calcium and vitamin D should be obtained in optimum daily levels. Most of us consume plenty of phosphorus and often too much if the diet is high in processed foods and colas. However, the elderly, dieters, and those on low protein diets often do not consume enough phosphorus to meet the needs of new bone formation.
- SILICON. It has long been known that bioactive silicon (silica) plays an important role in bone collagen synthesis. A 2005 human study found bioactive silicon to enhance the effects of calcium and vitamin D3 on new bone formation.
5. Enhance vitamin intake
While protein and minerals may be the building blocks, vitamins are the catalysts for many biochemical reactions and are equally important. In fracture healing, we can clearly identify the vital roles of several vitamins including vitamin C, vitamin D, and vitamin K as well as the energy-producing B vitamins, which should all be taken in therapeutic doses:
- VITAMIN C is essential for proper synthesis of the bone collagen protein matrix. It is also one of the most important antioxidants and anti-inflammatory nutrients. In severe vitamin C deficiency, collagen becomes too unstable to function properly, which results in skin lesions and fragile blood vessels with eventual bleeding from all mucous membranes. A tendency to black and blue without reason is most often a sign of sub-clinical vitamin C deficiency. Because of its essential role in bone collagen formation, adequate vitamin C is required for fracture healing. Several animal studies document this fact. For example, a small Turkish rat study showed that vitamin C supplementation accelerated the fracture healing process. A similar, yet larger, Spanish study also documented that rats with higher vitamin C blood levels developed a stronger fracture callus than did those with low blood levels.
- VITAMIN D is the primary regulator of calcium absorption and without adequate vitamin D calcium blood level drops making less calcium available for fracture healing. Studies as early as 1945 documented that low vitamin D levels led to sub optimal fracture healing and the administration of vitamin D accelerated initial fracture callus mineralization. Further, we now know that vitamin D, in conjunction with vitamin K, stimulates the transformation of fracture site stem cells to bone building osteoblasts. Overall, vitamin D is central to fracture healing and vitamin D status has been shown to be an independent predicator of functional recovery after hip fracture.
- VITAMIN K is an essential part of the biochemical processes that bind calcium to bone and it is required for proper formation of the osteocalcin bone protein. In addition, vitamin K helps conserve calcium by reducing the loss of calcium in the urine. Since 1960 it has been noted that vitamin K has a beneficial effect on fracture healing and has a real effect on all collagen tissues, especially bone tissue. Researchers have found that vitamin K is sequestered to the site of fracture resulting in markedly depressed circulating levels of vitamin K in fracture patients. The time taken for the vitamin K blood level to return to normal appears to be influenced by the severity of the fracture.
- VITAMIN B6 is one of the B vitamins that has been linked to fracture healing. Animals deficient in this vitamin fracture more frequently and experience reduced fracture healing. It appears that vitamin B6 modulates the effects of vitamin K on bone through complex biochemical pathways.
6 Ideas to Speed Bone Healing After Injury
- Stop Smoking. Some of the recommendations in this list may be controversial, or unknown the extent to which they affect bone healing. However, this much is clear: patients who smoke, have a much longer average time to healing, and a much higher risk of developing a nonunion (non-healing of the bone). Smoking alters the blood flow to the bone, and it is that blood flow that delivers the necessary nutrients and cells to allow the bone to heal.5 The number one thing you can do to ensure your recovery from a fracture is not smoke. If you know someone who has a fracture and smokes, find ways to help them quit.
- Eat a Balanced Diet. Healing of bone requires more nutrients that the body needs to simply maintain bone health. Patients with injuries should eat a balanced diet, and ensure adequate nutritional intake of all food groups.6 What we put into our body determines how well the body can function and recover from injury. If you break a bone, make sure you are eating a balanced diet so that your bone has the necessary nutrition to make a full recovery.
- Watch Your Calcium. The focus should be on all nutrients. It’s true that calcium is needed to heal bones, but taking excessive doses of calcium will not help you heal faster. Ensure you are consuming the recommended dose of calcium, and if not, try to consume more natural calcium–or consider a supplement.6 Taking mega-doses of calcium does not help a bone heal faster.
- Adhere to Your Treatment Plan. Your doctor will recommend a treatment, and you should adhere to this. Your doctor may recommend treatments including cast, surgery, crutches, or others. Altering the treatment ahead of schedule may delay your recovery. By removing a cast or walking on a broken bone before your doctor allows, you may be delaying your healing time.
- Ask Your Doctor. There are some fractures that may have treatment alternatives. For example, “Jones” fractures of the foot are a controversial treatment area. Studies have shown these fractures usually heal with immobilization in a cast and crutches. However, many doctors will offer surgery for these fractures because patients tend to heal much faster.7 Surgery creates potential risks, so these options must be weighed carefully. However, there may be options which alter the time it takes for a bone to heal.
- Augmenting Fracture Healing. Most often, external devices are not too helpful in accelerating fracture healing. Electrical stimulation, ultrasound treatment, and magnet have not been shown to accelerate the healing of most fractures.8 However, in difficult situations, these may be helpful to aid in the healing of broken bones.
Everyone wants their bone to heal as quickly as possible, but the truth is that it will still require some time for the injury to recover. Taking these steps will ensure that you are doing everything you can to make your bone recovers as soon as possible.